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Abstract 

The realization of classification tasks using deep learning is a primary 

goal of artificial intelligence; however, its possible universal behavior 

remains unexplored. Herein, we demonstrate a scaling behavior for the 

test error, 𝝐, as a function of the number of classified labels, 𝑲. For trained 

utmost deep architectures on CIFAR-100 𝝐(𝑲) ∝  𝑲𝝆 with 𝝆 ∼ 𝟏, and in 

case of reduced deep architectures, 𝝆 continuously decreases until a 

crossover to 𝝐(𝑲)  ∝  𝒍𝒐𝒈(𝑲) is observed for shallow architectures. A 

similar crossover is observed for shallow architectures, where the 

number of filters in the convolutional layers is proportionally increased. 

This unified the scaling behavior of deep and shallow architectures, 

which yields a reduced latency method. The dependence of 𝚫𝝐/𝚫𝑲 on the 

trained architecture is expected to be crucial in learning scenarios 

involving dynamic number of labels.  
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1. Introduction 

Deep learning is a key development tool for the advancement of technologies 

and in experimental and theoretical research fields[1, 2]. A typical supervised 

learning task involves the classification of input objects into multiple labels. This 

is realized using deep architectures[2, 3] comprising hundreds of convolutional 

layers (CLs)[4, 5], each of which comprises of tens or hundreds of filters 

followed by several fully connected (FC) layers. The output layer comprises 

several output units, each representing a distinct label that characterizes a 

subset of the inputs. 

   Several deep architectures have been examined, differing in many aspects, 

including the number of learning parameters, learning time, training and test 

latency, and test accuracy. The results suggest several qualitative trends, such 

that for a given classification, the task accuracy is enhanced with deeper 

architectures simultaneously with an increase in the learning process 

complexity, the number of tunable parameters and test latency. Despite the 

widespread use of deep learning architectures, the quantitative trends that 

characterize their behavior remain largely unexplored, except for instance, the 

power law decay of the test error as a function of the training dataset size[6-9]. 

This power law was found to govern several shallow architectures; however, 

the interplay between the features of the architecture and the power-law 

exponent remains unknown. The possible existence of a universal scaling 

behavior that governs both the deep and shallow learning architectures lies at 

the core of this study and is a prerequisite for the establishment of a theoretical 

quantitative foundation for deep and shallow learning.    

   In this work, we demonstrate that for a given architecture trained on CIFAR-

100[10], the test error 𝜖 as a function of the 𝐾 classified labels, representing by 

the output units, follows a power law 

𝜖(𝐾) = 𝐾𝜌    (1). 

The exponent 𝜌 for the utmost deep architecture is 1, which continuously 

decreases for reduced deep architectures until a crossover to a logarithmic 

scaling  

𝜖(𝐾) = log(𝐾)    (2) 



is observed for shallow architectures. A similar crossover from the power law 

to logarithmic scaling (Eqs. (1)-(2)), is observed for shallow architectures, 

where the number of filters in the CLs decreases proportionally. This similarity 

unifies the scaling behaviors of deep and shallow architectures. 

 

2. Materials and methods 

2.1. Architectures and Datasets  

Several different architectures were examined; Tree-3[11], LeNet-5[12], VGG-

6[13], VGG-16[13], EfficientNet-B0 and EfficientNet-B3[14]. All architectures 

were trained to classify CIFAR-100[10], and CIFAR-K/100[15, 16] where 𝐾 is 

the selected number of labels trained. The selected 𝐾 values are 

20, 40, 60, 80, and 100, and to reduce fluctuations in the measured accuracies 

each group of 𝐾 labels contains the selected 𝐾 − 20 labels, and consists of the 

same number of subclasses from each one of the 20 super-classes.  

2.2. Data preprocessing 

Each input pixel of an image (32 × 32) from the CIFAR-K/100 databases was 

divided by the maximal pixel value, 255, multiplied by 2, and subtracted by 1, 

such that its range was [−1,1]. During the training phase, data augmentation 

was used, derived from the original images, by random horizontally flipping and 

translating up to two pixels for Tree-3 and up to four pixels in each direction for 

and LeNet-5, VGG-6 and VGG-16. 

   For EfficientNet-B0, the images were normalized by subtracting the average 

value of each color and dividing by its standard deviation. The images were 

also expanded from their initial size of (32 × 32) to (224 × 224)[17]. Data 

augmentation was also used during the training phase, which included a 

random horizontal flip, a random rotation of up to two degrees, a random 

translation of the image of up to four pixels in each direction and a shear of up 

to two degrees.  

 

2.3. Optimization 



The cross-entropy cost function was selected for the classification task and was 

minimized using the stochastic gradient descent algorithm[18]. The maximal 

accuracy was determined by searching through the hyper-parameters (see 

below). Cross-validation was confirmed using several validation databases, 

each consisting a fifth of the training set examples, randomly selected. The 

Nesterov momentum[19] and L2 regularization method[20] were applied.  

2.4. Hyper-parameters 

The hyper-parameters η (learning rate), μ (momentum constant[19]), and α 

(regularization L2[20]) were optimized for offline learning, using a mini-batch 

size of 100 inputs. The learning rate decay schedule[21] was also optimized. A 

linear scheduler was used such that it was multiplied by the decay factor, 𝑞, 

every 𝛥𝑡 epochs, and is denoted below as (𝑞, 𝛥𝑡). Different hyper-parameters 

were used for each one of the architectures on each classification task. 

 

2.4.1. The hyper-parameters for the data presented in Fig. 1   

LeNet-5 (𝑑 = 6) was trained using the following hyper-parameters to reach 

maximal accuracies on CIFAR-K/100: 

LeNet-5 on CIFAR-K/100 

η μ α epochs 

0.028 0.92 9.5e-4 300 

 

Table 1. LeNet-5 hyper-parameters. 

 

The decay schedule for the learning rate is: 

(q, Δt) = {
(0.8,10)          𝑒𝑝𝑜𝑐ℎ ≤ 120
(0.7,10)          𝑒𝑝𝑜𝑐ℎ > 120

 

VGG-6 (𝑑 = 64) was trained using the following hyper-parameters to reach 

maximal accuracies on CIFAR-K/100: 

 



VGG-6 

K Layer  η μ α epochs 

20/40/60/80/100 CLs 2.2e-3 0.976 3.74e-3 280 

FC 1e-3 0.975 4e-3 280 

 

Table 2. VGG-6 hyper-parameters. 

The decay schedule for the learning rate is: 

For convolutional layers (CLs):                    

(q, Δt) = {
(0.65,20)          𝑒𝑝𝑜𝑐ℎ < 160
(0.55,20)          𝑒𝑝𝑜𝑐ℎ ≥ 160

 

For fully-connected layers (FCs):  

(q, Δt) = {
(0.65,20)          𝑒𝑝𝑜𝑐ℎ < 160
(065,20)          𝑒𝑝𝑜𝑐ℎ ≥ 160

 

 

VGG-16 (𝑑 = 64) was trained using the following hyper-parameters to reach 

maximal accuracies on CIFAR-K/100: 

 

VGG-16 

K η μ α epochs 

20 0.004 0.965 3e-3 300 

40/60/80/100 0.002 0.975 4e-3 300 

 

Table 3. VGG-16 hyper-parameters. 

The decay schedule for the learning rate is: 

(q, Δt) = (0.65, 20) 

EfficientNet-B0 and EfficientNet-B3 were trained on CIFAR-K/100 datasets 

using transfer learning[22] on the pre-trained EfficientNet architectures on 



ImageNet dataset. The transfer learning was done using the following hyper-

parameters and learning rate scheduler: 

EfficientNet-B0/B3 

CIFAR-K/100 

η μ α epochs 

0.01 0.9 0.001 200 

 

Table 4. Hyper-parameters for EfficientNet architectures.  

The decay schedule for the learning rate is: 

(q, Δt) = (0.975, 1) 

For the first seven stages, the learning rate 𝜂 was multiplied by a factor 0.1, and 

for the last stages by 0.2.  

 

2.4.2. The hyper-parameters for the data presented in Fig. 2  

 

LeNet-5, d=240 on CIFAR-K/100 

K η μ α epochs 

20/40 0.005 0.92 5e-3 300 

60 0.007 0.92 3e-3 300 

80/100 0.005 0.92 2e-3 300 

 

Table 5. LeNet-5 with 𝑑 = 240 hyper-parameters. The decay schedule for the 

learning rate is: 

(q, Δt) = {
(0.8,10)          𝑒𝑝𝑜𝑐ℎ < 120
(0.7,10)          𝑒𝑝𝑜𝑐ℎ ≥ 120

 

 

 

 



VGG-6, d=4 

K Layer η μ α epochs 

20 CLs 0.008 0.97 4e-3 300 

FC  0.001 0.975 4e-3 

40 CLs 0.006 0.972 4e-3 300 

FC  0.001 0.975 4e-3 

60 CLs 0.002 0.976 3.75e-3 300 

FC  0.001 0.975 4e-3 

80 CLs 0.002 0.976 3.75e-3 300 

FC  0.001 0.975 4e-3 

100 CLs 0.004 0.975 4e-3 300 

FC  0.001 0.975 4e-3 

VGG-6, d=8 

K layer η μ α epochs 

20 CLs 0.002 0.976 3.75e-3 280 

FC  0.001 0.975 4e-3 

40 CLs 0.002 0.976 3.75e-3 280 

FC  0.001 0.975 4e-3 

60 CLs 0.002 0.976 3.75e-3 280 

FC  0.001 0.975 4e-3 

80 CLs 0.002 0.976 3.75e-3 280 

FC  0.001 0.975 4e-3 

100 CLs 0.002 0.976 3.75e-3 280 

FC  0.001 0.975 4e-3 

VGG-6, d=160 

K layer η μ α epochs 

20 CLs 0.008 0.97 4e-3 300 

FC  0.004 0.975 1.5e-3 

40 CLs 0.008 0.97 4e-3 300 

FC  0.004 0.975 1.5e-3 

60 CLs 0.0022 0.976 4e-3 300 

FC  0.004 0.975 1.5e-3 



80 CLs 0.0022 0.976 4e-3 300 

FC  0.004 0.975 1.5e-3 

100 CLs 0.0022 0.976 4e-3 300 

 

Table 6. VGG-6 with different 𝑑 hyper-parameters.The decay schedule for the 

learning rate is: 

For CLs layers:                    

(q, Δt) = {
(0.65,20)          𝑒𝑝𝑜𝑐ℎ < 160
(0.55,20)          𝑒𝑝𝑜𝑐ℎ ≥ 160

 

For FCs layers:  

(q, Δt) = (0.65, 20) 

 

VGG-16, d=4 

K η μ α epochs 

20/40/60/80 0.008 0.975 4e-3 300 

100 0.003 0.975 4e-3 350 

 

Table 7. VGG-16 with 𝑑 = 4 hyper-parameters. 

The decay schedule for the learning rate is: 

For 𝐾 = 20/40/60/80: 

(q, Δt) = {
(0.65,20)              𝑒𝑝𝑜𝑐ℎ ≤ 200
(0.6,20)                  200 < 𝑒𝑝𝑜𝑐ℎ

 

For 𝐾 = 100: 

(q, Δt) = {

(0.67,20)              0 < 𝑒𝑝𝑜𝑐ℎ ≤ 200
(0.65,20)         200 < 𝑒𝑝𝑜𝑐ℎ < 300
(0.6,20)           300 ≤ 𝑒𝑝𝑜𝑐ℎ < 350

 

 

 



VGG-16, d=16 

η μ α epochs 

0.002 0.975 4e-3 300 

 

Table 8. VGG-16 with 𝑑 = 16 hyper-parameters. 

The decay schedule for the learning rate is: 

(q, Δt) = (0.65, 20) 

2.4.3. The hyper-parameters for the data presented in Fig. 3   

 

Tree-3 d=6 (M=16) on CIFAR-K/100 

η μ α epochs 

0.07 0.96 5e-5 300 

 

Table 9. Tree-3 with 𝑑 = 6 hyper-parameters. 

The decay schedule for the learning rate is: 

(q, Δt) = (0.6, 20) 

2.5. Hardware and software 

We used Google Colab Pro and its available GPUs. We used Pytorch for all the 

programming processes. The power law and the logarithmic fits were obtained 

using the standard regression method supported by Microsoft Excel and 

Python.   

 

 

3. Results 

3.1. Scaling in deep learning architectures 

The first architectures examined are EfficientNet-B0 and EfficientNet-B3 which 

comprised  approximately 180 and 320 layers, respectively, organized in 9 

blocks[23]. It was trained on the CIFAR-100 dataset[10] comprising 20 super-



classes, each of which is composed of 5 subclasses, that is, 𝐾 = 100 labels in 

total. The selected 𝐾 values are 20, 40, 60, 80, and 100, and to reduce 

fluctuations in the measured 𝜖, each group of 𝐾 labels contains the selected 

𝐾 − 20 labels[24]. The results indicate a linear scale, 𝜖(𝐾) ∝  𝐾 with small pre-

factors, ∼ 0.001 (Fig. 1(a)), hence 𝜖 almost vanishes when extrapolated to a 

small 𝐾, as expected. 

   The second examined case is the standard VGG-16[13] with 𝑑 = 64 filters in 

the first CL, representing a reduced deep architecture compared with 

EfficientNet-B0. The error rate follows a power law, 𝜖(𝐾) ∝  𝐾𝜌 where 𝜌 ∼  0.65 

and with a small pre-factor 0.012, as expected, for almost vanishing 𝜖 for small 

𝐾 (Fig. 1(b)). Similarly, for VGG-6[13] with 𝑑 = 64, 𝜌 is further slightly reduced 

to 0.62. Here, the pre-factor is slightly enhanced to 0.016 as 𝜖 of VGG-6 is 

expected to be higher than for VGG-16 (Fig. 1(c)). 

   For LeNet-5[25] a crossover to a logarithmic scale is observed (Fig. 1(d)), 

where 𝜖 vanishes at 𝐾 ∼  3.5. Here, 𝜖(𝐾) could also fit to a power law with 𝜌 ∼

 0.25; however, the pre-factor is ∼ 0.16, indicting a large 𝜖 even for 𝐾 = 1, which 

is unreasonable.   

   The improved accuracy of the trained architecture when the number of trained 

labels is reduced from 𝐾 to 𝐾1 = 𝐾 − 20 can be deduced from the following 

three measured quantities (Table 10). The third column in Table 10, 𝑇(𝐾1|𝐾) ∧

𝐹(𝐾1|𝐾1), denotes the number of correctly classified test inputs belonging to the 

𝐾1 labels for the architecture trained with 𝐾 labels, which are incorrectly 

classified on this architecture trained with 𝐾1 labels. This type of inputs 

decreases the accuracy of the trained network with 𝐾1 labels compared with 𝐾. 

The fourth column, 𝐹(𝐾1|𝐾) ∧ 𝑇(𝐾1|𝐾1), denotes the number of incorrectly 

classified test inputs belonging to the 𝐾1 labels for the architecture trained with 

𝐾 labels, which are incorrectly classified on this architecture trained with 𝐾1 

labels. For a given 𝐾, the numbers of events in the third and fourth columns are 

relatively similar; hence, their effect on the enhanced accuracy with 𝐾1 labels is 

minimal. The primary contribution to the enhanced accuracy while reducing the 

number of labels from 𝐾 to 𝐾1 is owing to the events belonging to the fifth 

column, 𝐹((𝐾1, 𝐾]|𝐾) ∧ 𝑇(𝐾1|𝐾1). The term 𝐹((𝐾1, 𝐾]|𝐾) denotes events such 

that, for 𝐾 trained labels, an input with a label in the range [1, 𝐾1] selects an 



incorrect output label belonging to (𝐾1, 𝐾], whereas with 𝐾1 trained labels they 

are correctly classified, 𝑇(𝐾1|𝐾1).  Based on simulation results presented in 

Table 10, one can verify the following inequality 

 

𝐹((𝐾1, 𝐾]|𝐾) ∧ 𝑇(𝐾1|𝐾1) ≫ |𝑇(𝐾1|𝐾) ∧ 𝐹(𝐾1 |𝐾1) − 𝐹(𝐾1|𝐾) ∧ 𝑇(𝐾1|𝐾1) |        (3).  

 

For EfficientNet-B0, zeroing the FC weights to the (𝐾1, 𝐾] output labels, for a 

network trained on 𝐾 labels, results in approximately 80% correct classification 

of such inputs, 𝐹((𝐾1, 𝐾]|𝐾). This indicates that the top-2 output labels are 

correctly classified with high probability, even without retraining the network 

with a smaller number of labels, 𝐾1.  

   For the LeNet-5 case (Table 10(c)), the fifth column, 𝐹((𝐾1, 𝐾]|𝐾) ∧  𝑇(𝐾1|𝐾1), 

is a constant almost independent of 𝐾, and the third and the fourth columns are 

approximately identical. Hence, the difference in the test error is expressed as: 

 𝜖𝐾 = 𝜖𝐾1
+

𝑐𝑜𝑛𝑠𝑡

𝐾 ⋅ 100
              (4) 

where 𝐾 ⋅ 100 denotes the dataset test size for CIFAR-100 with 𝐾 labels. After 

rescaling 𝑛 =
𝐾

20
,  one finds that 

 𝜖𝑛 = 𝜖𝑛−1 +
𝑐𝑜𝑛𝑠𝑡

𝑛 ⋅ (20 ⋅ 100)
      (5) 

where 𝑛 = 1, 2, … , 5. This recursion relation yields 

𝜖𝑛 = 𝜖1 +
𝑐𝑜𝑛𝑠𝑡

20 ⋅ 100
∑

1

𝑘

𝑛

𝑘=2

          (6) 

which can be approximated by  

𝜖𝑛 = 𝐴 ⋅ 𝑙𝑜𝑔(𝑛) + 𝐵                   (7) 

where 𝐴 and 𝐵 are constants, and its form supports the logarithmic scaling 

behavior (Fig. 1(d)). 



 

Fig. 1. Scaling for the error rate, 𝜖, as a function of the number of classified 

labels, 𝐾, for CIFAR-100. (a)  EfficientNet-B0 (blue) and EfficientNet-B3 

(orange) with power law fits on a log-log plot (dashed lines). (b) VGG-16 with 

𝑑 = 64 and the power law fit on a log-log plot (dashed blue line). (c) Similar to 

panel (b) VGG-6. (d) LeNet-5 with 𝑑 = 6 and the logarithmic fit on a semi-log 

plot (dashed blue line).  

 

 

 

 

 

 

 



(a) 

EfficientNet-B0 

𝐹((𝐾1, 𝐾]|𝐾) ∧ 𝑇(𝐾1|𝐾1) 𝐹(𝐾1|𝐾) ∧ 𝑇(𝐾1|𝐾1) 𝑇(𝐾1|𝐾) ∧ 𝐹(𝐾1|𝐾1) 𝐾1 𝐾 

68 5 12 20 40 

97 26 49 40 60 

160 76 90 60 80 

149 102 136 80 100 

 

(b) 

VGG-16, 𝑑 = 64 

𝐹((𝐾1, 𝐾]|𝐾) ∧ 𝑇(𝐾1|𝐾1) 𝐹(𝐾1|𝐾) ∧ 𝑇(𝐾1|𝐾1) 𝑇(𝐾1|𝐾) ∧ 𝐹(𝐾1|𝐾1) 𝐾1 𝐾 

101 38 56 20 40 

168 136 163 40 60 

235 244 284 60 80 

219 410 444 80 100 

 

(c) 

LeNet-5, 𝑑 = 6 

𝐹((𝐾1, 𝐾]|𝐾) ∧ 𝑇(𝐾1|𝐾1) 𝐹(𝐾1|𝐾) ∧ 𝑇(𝐾1|𝐾1) 𝑇(𝐾1|𝐾) ∧ 𝐹(𝐾1|𝐾1) 𝐾1 𝐾 

225 90 137 20 40 

288 310 323 40 60 

294 410 585 60 80 

254 633 631 80 100 

 

Table 10. Three measured quantities while reducing the trained network from 

𝐾 to 𝐾1 = 𝐾 − 20 output labels. 𝑇(𝐾1|𝐾)/𝐹(𝐾1|𝐾) represents the 

correct/incorrect test outputs among the 𝐾1 labels, for the trained network on 𝐾 

labels, respectively. Similarly, 𝑇(𝐾1|𝐾1)/𝐹(𝐾1|𝐾1) represents the 

correct/incorrect outputs for the trained network on 𝐾1 labels, respectively. 

𝐹((𝐾1, 𝐾]|𝐾) denotes the input events with labels in the range [1, 𝐾1] selecting 

incorrect output labels belonging to (𝐾1, 𝐾]. (a) EfficientNet-B0, (b) VGG-16 with 

𝑑 = 64, and (c) LeNet-5 with 𝑑 = 6. 

 

3.2. Scaling in shallow learning architectures 

Recent work has indicated that shallow architectures can achieve accuracies 

similar to those of deep architectures by using an increasing number of filters, 

𝑑, in the first CL, and accordingly in the entire CLs[7, 26]. This similarity 



between wide shallow and narrow deep architectures[26] is extended to the 

scaling behavior of 𝜖(𝐾). A crossover is observed from a logarithmic scaling of 

𝜖(𝐾) for Lenet-5 with 𝑑 = 6 to a power law with 𝜌~0.54 for 𝑑 = 240 (Fig. 2(a)). 

A similar trend was obtained for VGG-16 where for 𝑑 = 4, 16, 64, 𝜌 increases 

to  0.46, 0.56, 0.66, respectively (Fig. 2(b)). Quantitatively, 𝜌 and 𝜖 of LeNet-5 

with 𝑑 = 240 is very similar to that of VGG-16 with 𝑑 = 16. This demonstrates 

an example of the equivalence  between wide shallow and narrow deep 

architectures (Fig. 2(c)).  Similarly, VGG-6 with 𝑑 = 160 and VGG-16 with 𝑑 =

64 yield the same 𝜌 and 𝜖 (Fig. 2(d)). These results demonstrate a reduced 

latency method using wide shallow architectures while maintaining 𝜖. 

 

Fig. 2. Crossover of the 𝜖(𝐾) scaling while increasing 𝑑 . (a) LeNet-5 with 𝑑 =

6 (orange) and 𝑑 = 240 (blue) and their logarithmic and power law fits (dashed 

lines). (b) VGG-16 with 𝑑 = 4 (blue), 16 (orange), 64 (green) and their power law 

fits on a log-log scale (dashed lines) (c) Similar to panel (b), LeNet-5 with 𝑑 =



240 (orange) and VGG-16 with 𝑑 = 16 (blue). (d) Similar to panel (b), VGG-6 

with 𝑑 = 160 (orange) and VGG-16 with 𝑑 = 64 (blue).  

 

   The accuracy achieved by LeNet-5 on CIFAR-10[10] was recently imitated 

using a Tree-3 architecture comprising only of three layers, where each weight 

was connected to an output unit via a single route[27]. The equivalence 

between the LeNet-5 and Tree-3 architectures is extended to CIFAR-100, 

where the accuracy of both architectures is approximately 0.44 (Fig. 3). 

Moreover, 𝜖(𝐾) for both architectures follows a logarithmic scale with almost an 

identical form (Fig. 3). The results may indicate that different shallow 

architectures with the same 𝜖 for a given 𝐾 have also a similar 𝜖(𝐾). 

 

Fig. 3. Semi-log scale of 𝜖(𝐾) for LeNet-5 with 𝑑 = 6 (blue) and the Tree-3 

architecture[27] with 𝑀 = 16 (orange) and their logarithmic scale fits (dashed 

lines). 

 

4. Conclusions 

Power law scaling is a central universal feature characterizing critical physical 

phenomena[28-33] and, in particular, second-order phase transitions[34, 35]. 

This study demonstrated its applicability to deep learning, where the test error 



for a given architecture decayed according to a power law with a decreasing 

number of classified labels (Fig. 1). The power law exponent, 𝜌 (Eq. (1)), 

decreased as the architecture became less deep. Finally, a crossover to a 

logarithmic scaling, that is, 𝜌 →  0,  was observed for shallow architectures, 

which was supported by a theoretical argument (Eqs. (3)–(7)). A similar power-

law behavior was observed for several examined shallow architectures with a 

tunable number of filters 𝑑 in the first CL, and accordingly in all CLs (Figs. 2 

and 3). The similarity between wide shallow and narrow deep architectures was 

explicitly quantitatively demonstrated. Further, it was extended to the scaling 

behavior of 𝜖(𝐾).   

   The results of this study have several useful applications, including the 

following. First, the result that a relatively shallow but wide architecture can 

achieve the same 𝜖(𝐾) as a narrow deep architecture (Fig. 2(c)-(d)), 

significantly decreases the latency for an output decision on a test input. 

Currently, reducing latency is a crucial goal in the implementation of artificial 

intelligence[7, 24, 36, 37]. However, the extension of shallow architectures to 

numerous filters d, results in a significant slowdown of training and test 

procedures. Thus, its efficient utilization requires a new type of graphical 

processing units. Second, the results obtained are valuable in common realities 

of the dynamic number of output labels; for instance, new species are 

dynamically added or subtracted from the classification task. In such 

realizations, a prior knowledge, before retraining, of the expected change in test 

error rates, 
Δ𝜖

Δ𝐾
, is a valuable information. The results indicated that for shallow 

architectures,  
Δ𝜖

Δ𝐾
∝

1

𝐾
  decayed with 𝐾 and was maximal for a very deep 

architecture, 
Δ𝜖

Δ𝐾
= 𝑐𝑜𝑛𝑠𝑡, (Fig. 1). Apparently, the addition or subtraction of a 

label is favored in shallow architectures. However, 𝜖 and 
Δ𝜖

Δ𝐾
 of deep 

architectures (Fig. 1(a)) were significantly lower than for shallow architectures 

(Fig. 1(d)), as their scaling pre-factor was considerably smaller. 

    Results are presented for CIFAR-100 database only, nevertheless 

preliminary results indicate similar trends for Sports-100 dataset[38, 39] 

consisting of 100 labels. A crossover from a power law behavior (Eq. (1)) for 

VGG-16 to a logarithmic scale for LeNet-5 is observed.  In addition, for EMNIST 



dataset[40] consisting of 47 labels and only 50 training examples per label, 𝜌 

decreases from ∼ 1 for VGG-16 to ~0.5 for LeNet-5. The lack of logarithmic 

behavior, even for a single fully connected network, is attributed to the simplicity 

of the dataset consisting of gray scale centered images. 

    The results may suggest that two architectures demonstrating the same 𝜖 for 

a given 𝐾 will have the same quantitative form of 𝜖(𝐾) (Fig. 3). A quantitative 

exploration of this claim necessitates an extension of the presented work to 

other datasets, particularly datasets comprising numerous labels covering 

several power law decades. However, this mission is currently challenging for 

several reasons. The selected Δ𝐾 for measuring Δ𝜖 must be sufficiently large 

to neglect fluctuations as a function of the selected subset, 𝐾, of labels. 

Consequently, the power law scaling of 𝜖(𝐾) was not extended to 𝐾 ≤  10 (Figs. 

1–3). In addition, an extension to datasets comprising 𝐾 > 100 labels, for 

example, ImageNet[41, 42], requires the same number of input examples and 

accuracy for each label, which is currently difficult to realize. Another possible 

extension of the presented work is to other types of shallow architectures such 

as Boltzmann machine[43-46]. 

   Finally, an interesting theoretical question is the establishment of lower and 

upper bounds for 
Δ𝜖

Δ𝐾
. It may be possible that 𝜖(𝐾) ∝ log (𝑙𝑜𝑔(𝐾)) will be obtained 

for the shallowest architecture without hidden layers, and an open question is 

the reality of a deep architecture where 
𝛥𝜖

𝛥𝐾
 increases with 𝐾. 

 

 

 

 

 

 

 

 



[1 ] E. Agliari, A. Barra, P. Sollich, L. Zdeborová, Machine learning and statistical physics: theory, 
inspiration, application, J. Phys. A ( ,2020.)  

[2 ] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, nature, 521 (2015) 436-444. 
[3 ] J. Schmidhuber, Deep learning in neural networks: An overview, Neural networks, 61 

(2015) 85-117. 
[4 ] G. Huang, Z. Liu, L. Van Der Maaten, K.Q. Weinberger, Densely connected convolutional 

networks, in:  Proceedings of the IEEE conference on computer vision and pattern recognition, 
2017, pp. 4700-4708. 

[5 ] D. Han, J. Kim, J. Kim, Deep pyramidal residual networks, in:  Proceedings of the IEEE 
conference on computer vision and pattern recognition, 2017, pp. 5927-5935. 

[6 ] Y. Meir, S. Sardi, S. Hodassman, K. Kisos, I. Ben-Noam, A. Goldental, I. Kanter, Power-law 
scaling to assist with key challenges in artificial intelligence, Scientific reports, 10 (2020) 
19628. 

[7 ] Y. Meir, O. Tevet, Y. Tzach, S. Hodassman, R.D. Gross, I. Kanter, Efficient shallow learning 
as an alternative to deep learning, Scientific Reports, 13 (2023) 5423. 

[8 ] Y. Bahri, E. Dyer, J. Kaplan, J. Lee, U. Sharma, Explaining neural scaling laws, arXiv preprint 
arXiv:2102.06701 ( ,2021.)  

[9 ] J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, M.M.A .Patwary, Y. 
Yang, Y. Zhou, Deep learning scaling is predictable, empirically, arXiv preprint 
arXiv:1712.00409 ( ,2017.)  

[10 ] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny images ( ,2009.)  
[11 ] Y. Meir, I. Ben-Noam, Y. Tzach, S. Hodassman, I. Kanter, Learning on tree architectures 

outperforms a convolutional feedforward network, Scientific Reports, 13 (2023) 962 %@ 
2045-2322. 

[12 ] Y. Lecun, L.D. Jackel, B. Boser, J.S. Denker, H.P. Graf, I. Guyon, D. Henderson, R.E. Howard, 
W. Hubbard, Handwritten digit recognition: applications of neural net chips and automatic 
learning, in:  Artificial neural networks, IEEE Press, 1992, pp. 463-468. 

[13 ] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image 
recognition ,arXiv preprint arXiv:1409.1556 ( ,2014.)  

[14 ] M. Tan, Q. Le, Efficientnet: Rethinking model scaling for convolutional neural networks, 
in, PMLR, 2019, pp. 6105-6114 %@ 2640-3498. 

[15] Y. Meir, Y. Tzach, S. Hodassman, O. Tevet, I. Kanter, Towards a universal mechanism for 
successful deep learning, Scientific Reports, 14 (2024) 5881 %@ 2045-2322. 

[16 ] O. Tevet, R.D. Gross, S. Hodassman, T. Rogachevsky, Y. Tzach, Y. Meir, I. Kanter, Efficient 
shallow learning mechanism as an alternative to deep learning, Physica A: Statistical 
Mechanics and its Applications, 635 (2024) 129513 %@ 120378-124371. 

[17 ] R. Keys, Cubic convolution interpolation for digital image processing, IEEE transactions on 
acoustics, speech, and signal processing, 29 (1981) 1153-1160. 

[18 ] J .Schmidhuber, Deep learning in neural networks: An overview, Neural networks, 61 
(2015) 85-117 %@ 0893-6080. 

[19 ] A. Botev, G. Lever, D. Barber, Nesterov's accelerated gradient and momentum as 
approximations to regularised update descent, in, IEEE, 2017 ,pp. 1899-1903 %@ 
1509061827. 

[20 ] C. Cortes, M. Mohri, A. Rostamizadeh, L2 regularization for learning kernels, arXiv preprint 
arXiv:1205.2653 ( ,2012.)  

[21 ] K. You, M. Long, J. Wang, M.I. Jordan, How does learning rate decay help modern neural 
networks ,?arXiv preprint arXiv:1908.01878 ( ,2019.)  

[22 ] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How transferable are features in deep neural 
networks?, Advances in neural information processing systems, 27  (2014.)  

[23 ] M. Tan, Q. Le, Efficientnet: Rethinking model scaling for convolutional neural networks, 
in:  International conference on machine learning, PMLR, 2019, pp. 6105-6114. 



[24 ] Y. Meir, Y. Tzach, S. Hodassman, O. Tevet, I. Kanter, Towards a universal mechanism for 
successful deep learning, Scientific Reports, 14 (2024) 5881. 

[25 ] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document 
recognition, Proceedings of the IEEE, 86 (1998) 2278-2324. 

[26 ] O. Tevet, R.D. Gross, S. Hodassman, T. Rogachevsky, Y. Tzach, Y. Meir ,I. Kanter, Efficient 
shallow learning mechanism as an alternative to deep learning, Physica A: Statistical 
Mechanics and its Applications, 635 (2024) 129513. 

[27 ] Y. Meir, I. Ben-Noam, Y. Tzach, S. Hodassman, I. Kanter, Learning on tree architectures 
outperforms a convolutional feedforward network, Scientific Reports, 13 (2023) 962. 

[28 ] A. Barra, G. Genovese, P. Sollich, D. Tantari, Phase diagram of restricted Boltzmann 
machines and generalized Hopfield networks with arbitrary priors, Physical Review E  ,97 

(2018 )022310.  
[29 ] P. Bak, K. Christensen, L. Danon, T. Scanlon, Unified scaling law for earthquakes, Phys Rev 

Lett, 88 (2002) 178501. 
[30 ] Z.-S. She, E. Leveque, Universal scaling laws in fully developed turbulence, Phys Rev Lett, 

72 (1994) 336. 
[31 ] R. Albert, A.-L. Barabási, Statistical mechanics of complex networks, Reviews of modern 

physics, 74 (2002) 47. 
[32 ] M. Levy, S. Solomon, New evidence for the power-law distribution of wealth, Physica A: 

Statistical Mechanics and its Applications, 242 (19 97 )94-90.  
[33 ] A. Blank, S. Solomon, Power laws in cities population, financial markets and internet sites 

(scaling in systems with a variable number of components), Physica A: Statistical Mechanics 
and its Applications, 287 (2000) 279-288. 

[34 ] K.G. Wilson, The renormalization group: Critical phenomena and the Kondo problem, 
Reviews of modern physics, 47 (1975) 773. 

[35 ] S.-K. Ma, Modern theory of critical phenomena, Routledge, 2018. 
[63 ] S. Naveen, M.R. Kounte, M.R. Ahmed, Low latency deep learning inference model for 

distributed intelligent IoT edge clusters, IEEE Access, 9 (2021) 160607-160621. 
[37 ] M.M.H. Shuvo, S.K. Islam, J. Cheng, B.I. Morshed, Efficient acceleration of deep learning 

inference on resource-constrained edge devices: A review, Proceedings of the IEEE, 111 (2022) 
42-91. 

[38 ] J. Cui, Research on application of model ensemble in sports image classification based on 
environmental information, in:  Journal of Physics: Conference Series, IOP Publishing, 2023, 
pp. 012035. 
 ]39[Gerry, 100 Sports Image Classification, Version 9.  
https://www.kaggle.com/datasets/gpiosenka/sports-classification/, in, May 2023. 

[40 ] G. Cohen, S. Afshar, J. Tapson, A. Van Schaik, EMNIST: Extending MNIST to handwritten 
letters, in:  2017 international joint conference on neural networks (IJCNN), IEEE, 2017, pp. 
2921-2926. 

[41 ] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional 
neural networks, Advances in neural information processing systems, 25  (2012.)  

[42 ] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hierarchical 
image database, in:  2009 IEEE conference on computer vision and pattern recognition, Ieee, 
2009, pp. 248-255. 

[43 ] A. Fachechi, A. Barra, E. Agliari, F. Alemanno, Outperforming RBM feature-extraction 
capabilities by “dreaming” mechanism, IEEE transactions on neural networks and learning 
systems ( ,2022.)  

[44 ] E. Agliari, F. Alemanno, A. Barra, G. De Marzo, The emergence of a concept in shallow 
neural networks, Neural Networks  ,148 (2022 )253-232.  

[45 ] A. Barra, G. Genovese, P. Sollich, D. Tantari, Phase transitions in restricted Boltzmann 
machines with generic priors, Physical Review E, 96 (2017) 042156. 

https://www.kaggle.com/datasets/gpiosenka/sports-classification/


[46 ] G.E. Hinton, R.R. Salakhutdinov, A better way to pretrain deep boltzmann machines, 
Advances in Neural Information Processing Systems, 25  (2012.)  

 


